目录

[toc]

介绍一下 ACID 特性

事务是由 MySQL 的引擎来实现的,我们常见的 InnoDB 引擎它是支持事务的。 不过并不是所有的引擎都能支持事务,比如 MySQL 原生的 MyISAM 引擎就不支持事务,也正是这样,所以大多数 MySQL 的引擎都是用 InnoDB。 事务看起来感觉简单,但是要实现事务必须要遵守 4 个特性,分别如下:

  • 原子性(Atomicity):一个事务中的所有操作,要么全部完成,要么全部不完成,不会结束在中间某个环节,而且事务在执行过程中发生错误,会被回滚到事务开始前的状态,就像这个事务从来没有执行过一样,就好比买一件商品,购买成功时,则给商家付了钱,商品到手;购买失败时,则商品在商家手中,消费者的钱也没花出去。
  • 一致性(Consistency):是指事务操作前和操作后,数据满足完整性约束,数据库保持一致性状态。比如,用户 A 和用户 B 在银行分别有 800 元和 600 元,总共 1400 元,用户 A 给用户 B 转账 200 元,分为两个步骤,从 A 的账户扣除 200 元和对 B 的账户增加 200 元。一致性就是要求上述步骤操作后,最后的结果是用户 A 还有 600 元,用户 B 有 800 元,总共 1400 元,而不会出现用户 A 扣除了 200 元,但用户 B 未增加的情况(该情况,用户 A 和 B 均为 600 元,总共 1200 元)。
  • 隔离性(Isolation):数据库允许多个并发事务同时对其数据进行读写和修改的能力,隔离性可以防止多个事务并发执行时由于交叉执行而导致数据的不一致,因为多个事务同时使用相同的数据时,不会相互干扰,每个事务都有一个完整的数据空间,对其他并发事务是隔离的。也就是说,消费者购买商品这个事务,是不影响其他消费者购买的。
  • 持久性(Durability):事务处理结束后,对数据的修改就是永久的,即便系统故障也不会丢失

InnoDB 引擎通过什么技术来保证事务的这四个特性的呢?

  • 持久性是通过 redo log (重做日志)来保证的;
  • 原子性是通过 undo log(回滚日志) 来保证的;
  • 隔离性是通过 MVCC(多版本并发控制) 或锁机制来保证的;
  • 一致性则是通过持久性+原子性+隔离性来保证;

Innodb MyISAM 区别

  1. InnoDB 支持事务,MyISAM 不支持事务。这是 MySQL 将默认存储引擎从 MyISAM 变成 InnoDB 的重要原因之一;

  2. InnoDB 支持外键,而 MyISAM 不支持。对一个包含外键的 InnoDB 表转为 MYISAM 会失败;

  3. InnoDB 是聚集索引,MyISAM 是非聚集索引。聚簇索引的文件存放在主键索引的叶子节点上,因此 InnoDB 必须要有主键,通过主键索引效率很高。但是辅助索引需要两次查询,先查询到主键,然后再通过主键查询到数据。因此,主键不应该过大,因为主键太大,其他索引也都会很大。而 MyISAM 是非聚集索引,数据文件是分离的,索引保存的是数据文件的指针。主键索引和辅助索引是独立的。

  4. InnoDB 不保存表的具体行数,执行 select count (*) from table 时需要全表扫描。而 MyISAM 用一个变量保存了整个表的行数,执行上述语句时只需要读出该变量即可,速度很快;

  5. InnoDB 最小的锁粒度是行锁,MyISAM 最小的锁粒度是表锁。一个更新语句会锁住整张表,导致其他查询和更新都会被阻塞,因此并发访问受限。这也是 MySQL 将默认存储引擎从 MyISAM 变成 InnoDB 的重要原因之一;

联合索引是什么,好处是什么,使用场景

从字段个数的角度来看,索引分为单列索引、联合索引(复合索引)。

  • 建立在单列上的索引称为单列索引,比如主键索引;
  • 建立在多列上的索引称为联合索引;

好处:

  • 增加索引覆盖的情况,减少回表查询,降低磁盘 IO

介绍一下 b + 树

b + 树和 b 树的区别,为什么用 b + 树

B+Tree 相比于 B 树、二叉树或 Hash 索引结构的优势在哪儿? 之前我也专门写过一篇文章,想详细了解的可以看这篇:「女朋友问我:为什么 MySQL 喜欢 B+ 树?我笑着画了 20 张图 (opens new window)」,这里就简单做个比对。

B+Tree vs B Tree

B+Tree 只在叶子节点存储数据,而 B 树 的非叶子节点也要存储数据,所以 B+Tree 的单个节点的数据量更小,在相同的磁盘 I/O 次数下,就能查询更多的节点。 另外,B+Tree 叶子节点采用的是双链表连接,适合 MySQL 中常见的基于范围的顺序查找,而 B 树无法做到这一点。

B+Tree vs 二叉树

对于有 N 个叶子节点的 B+Tree,其搜索复杂度为O(logdN),其中 d 表示节点允许的最大子节点个数为 d 个。 在实际的应用当中, d 值是大于100的,这样就保证了,即使数据达到千万级别时,B+Tree 的高度依然维持在 34 层左右,也就是说一次数据查询操作只需要做 34 次的磁盘 I/O 操作就能查询到目标数据。 而二叉树的每个父节点的儿子节点个数只能是 2 个,意味着其搜索复杂度为 O(logN),这已经比 B+Tree 高出不少,因此二叉树检索到目标数据所经历的磁盘 I/O 次数要更多。

3、B+Tree vs Hash

Hash 在做等值查询的时候效率贼快,搜索复杂度为 O(1)。 但是 Hash 表不适合做范围查询,它更适合做等值的查询,这也是 B+Tree 索引要比 Hash 表索引有着更广泛的适用场景的原因。

mysql 有哪些索引

我们可以按照四个角度来分类索引。

  • 按「数据结构」分类:B+tree索引、Hash索引、Full-text索引
  • 按「物理存储」分类:聚簇索引(主键索引)、二级索引(辅助索引)
  • 按「字段特性」分类:主键索引、唯一索引、普通索引、前缀索引
  • 按「字段个数」分类:单列索引、联合索引

聚簇索引和非聚簇索引,区别和联系

索引又可以分成聚簇索引和非聚簇索引(二级索引),它们区别就在于叶子节点存放的是什么数据:

  • 聚簇索引的叶子节点存放的是实际数据,所有完整的用户记录都存放在聚簇索引的叶子节点;
  • 二级索引的叶子节点存放的是主键值,而不是实际数据。

因为表的数据都是存放在聚簇索引的叶子节点里,所以 InnoDB 存储引擎一定会为表创建一个聚簇索引,且由于数据在物理上只会保存一份,所以聚簇索引只能有一个。 如果某个查询语句使用了二级索引,但是查询的数据不是主键值,这时在二级索引找到主键值后,需要去聚簇索引中获得数据行,这个过程就叫作「回表」,也就是说要查两个 B+ 树才能查到数据。不过,当查询的数据是主键值时,因为只在二级索引就能查询到,不用再去聚簇索引查,这个过程就叫作「索引覆盖」,也就是只需要查一个 B+ 树就能找到数据。

内连接、外连接

介绍一下行锁

不同隔离级别下,行级锁的种类是不同的。 在读已提交隔离级别下,行级锁的种类只有记录锁,也就是仅仅把一条记录锁上。 在可重复读隔离级别下,行级锁的种类除了有记录锁,还有间隙锁(目的是为了避免幻读),所以行级锁的种类主要有三类:

  • Record Lock,记录锁,也就是仅仅把一条记录锁上
  • Gap Lock,间隙锁,锁定一个范围,但是不包含记录本身
  • Next-Key Lock:Record Lock + Gap Lock 的组合,锁定一个范围,并且锁定记录本身

Gap Lock 只存在于可重复读隔离级别,目的是为了解决可重复读隔离级别下幻读的现象。间隙锁虽然存在 X 型间隙锁和 S 型间隙锁,但是并没有什么区别,间隙锁之间是兼容的,即两个事务可以同时持有包含共同间隙范围的间隙锁,并不存在互斥关系,因为间隙锁的目的是防止插入幻影记录而提出的next-key lock 是包含间隙锁+记录锁的,如果一个事务获取了 X 型的 next-key lock,那么另外一个事务在获取相同范围的 X 型的 next-key lock 时,是会被阻塞的

脏读、不可重复读、幻读,以及默认的隔离级别可以解决哪些问题

MySQL 服务端是允许多个客户端连接的,这意味着 MySQL 会出现同时处理多个事务的情况。 那么在同时处理多个事务的时候,就可能出现脏读(dirty read)、不可重复读(non-repeatable read)、幻读(phantom read)的问题

  • 脏读:读到其他事务未提交的数据;
  • 不可重复读:前后读取的数据不一致;
  • 幻读:前后读取的记录数量不一致。

脏读

如果一个事务「读到」了另一个「未提交事务修改过的数据」,就意味着发生了「脏读」现象。 举个栗子。 假设有 A 和 B 这两个事务同时在处理,事务 A 先开始从数据库中读取小林的余额数据,然后再执行更新操作,如果此时事务 A 还没有提交事务,而此时正好事务 B 也从数据库中读取小林的余额数据,那么事务 B 读取到的余额数据是刚才事务 A 更新后的数据,即使没有提交事务。

图片

因为事务 A 是还没提交事务的,也就是它随时可能发生回滚操作,如果在上面这种情况事务 A 发生了回滚,那么事务 B 刚才得到的数据就是过期的数据,这种现象就被称为脏读。

不可重复读

在一个事务内多次读取同一个数据,如果出现前后两次读到的数据不一样的情况,就意味着发生了「不可重复读」现象。 举个栗子。 假设有 A 和 B 这两个事务同时在处理,事务 A 先开始从数据库中读取小林的余额数据,然后继续执行代码逻辑处理,在这过程中如果事务 B 更新了这条数据,并提交了事务,那么当事务 A 再次读取该数据时,就会发现前后两次读到的数据是不一致的,这种现象就被称为不可重复读。

图片

幻读

在一个事务内多次查询某个符合查询条件的「记录数量」,如果出现前后两次查询到的记录数量不一样的情况,就意味着发生了「幻读」现象。 举个栗子。 假设有 A 和 B 这两个事务同时在处理,事务 A 先开始从数据库查询账户余额大于 100 万的记录,发现共有 5 条,然后事务 B 也按相同的搜索条件也是查询出了 5 条记录。

图片

接下来,事务 A 插入了一条余额超过 100 万的账号,并提交了事务,此时数据库超过 100 万余额的账号个数就变为 6。 然后事务 B 再次查询账户余额大于 100 万的记录,此时查询到的记录数量有 6 条,发现和前一次读到的记录数量不一样了,就感觉发生了幻觉一样,这种现象就被称为幻读。

介绍一下各种隔离级别

SQL 标准提出了四种隔离级别来规避这些现象,隔离级别越高,性能效率就越低,这四个隔离级别如下:

  • 读未提交(read uncommitted,指一个事务还没提交时,它做的变更就能被其他事务看到;
  • 读提交(read committed,指一个事务提交之后,它做的变更才能被其他事务看到;
  • 可重复读(repeatable read,指一个事务执行过程中看到的数据,一直跟这个事务启动时看到的数据是一致的,MySQL InnoDB 引擎的默认隔离级别
  • 串行化(serializable );会对记录加上读写锁,在多个事务对这条记录进行读写操作时,如果发生了读写冲突的时候,后访问的事务必须等前一个事务执行完成,才能继续执行;

怎么实现可重复读

可重复读隔离级别是启动事务时生成一个 Read View,然后整个事务期间都在用这个 Read View

MVCC 作用及其实现原理

参考:你真的懂MVCC吗?来手动实践一下? - 掘金 (juejin.cn)

  • Read View 中四个字段作用;

Read View 有四个重要的字段

  • m_ids :指的是在创建 Read View 时,当前数据库中「活跃事务」的事务 id 列表,注意是一个列表,“活跃事务”指的就是,启动了但还没提交的事务
  • min_trx_id :指的是在创建 Read View 时,当前数据库中「活跃事务」中事务 id 最小的事务,也就是 m_ids 的最小值。
  • max_trx_id :这个并不是 m_ids 的最大值,而是创建 Read View 时当前数据库中应该给下一个事务的 id 值,也就是全局事务中最大的事务 id 值 + 1;
  • creator_trx_id :指的是创建该 Read View 的事务的事务 id

聚簇索引记录中两个跟事务有关的隐藏列

对于使用 InnoDB 存储引擎的数据库表,它的聚簇索引记录中都包含下面两个隐藏列:

  • trx_id,当一个事务对某条聚簇索引记录进行改动时,就会把该事务的事务 id 记录在 trx_id 隐藏列里
  • roll_pointer,每次对某条聚簇索引记录进行改动时,都会把旧版本的记录写入到 undo 日志中,然后这个隐藏列是个指针,指向每一个旧版本记录,于是就可以通过它找到修改前的记录。

可见性算法

一个事务去访问记录的时候,除了自己的更新记录总是可见之外,还有这几种情况:

  • 如果记录的 trx_id 值小于 Read View 中的 min_trx_id 值,表示这个版本的记录是在创建 Read View 已经提交的事务生成的,所以该版本的记录对当前事务可见
  • 如果记录的 trx_id 值大于等于 Read View 中的 max_trx_id 值,表示这个版本的记录是在创建 Read View 才启动的事务生成的,所以该版本的记录对当前事务不可见
  • 如果记录的 trx_id 值在 Read View 的 min_trx_id 和 max_trx_id 之间,需要判断 trx_id 是否在 m_ids 列表中:
    • 如果记录的 trx_id  m_ids 列表中,表示生成该版本记录的活跃事务依然活跃着(还没提交事务),所以该版本的记录对当前事务不可见
    • 如果记录的 trx_id 不在 m_ids列表中,表示生成该版本记录的活跃事务已经被提交,所以该版本的记录对当前事务可见

这种通过「版本链」来控制并发事务访问同一个记录时的行为就叫 MVCC(多版本并发控制)。

MVCC 在 RR 和 RC 这两个隔离级别下的区别

「读提交」隔离级别是在「每个语句执行前」都会重新生成一个 Read View,而「可重复读」隔离级别是「启动事务时」生成一个 Read View,然后整个事务期间都在用这个 Read View。

快照读和当前读

MySQL 里除了普通查询是快照读,其他都是当前读。比如 update、insert、delete,这些语句执行前都会查询最新版本的数据,然后再做进一步的操作。 这很好理解,假设你要 update 一个记录,另一个事务已经 delete 这条记录并且提交事务了,这样不是会产生冲突吗,所以 update 的时候肯定要知道最新的数据。 另外,select ... for update 这种查询语句是当前读,每次执行的时候都是读取最新的数据。

介绍一下 redo log、bin log、undo log

  • undo log(回滚日志):是 Innodb 存储引擎层生成的日志,实现了事务中的原子性,主要用于事务回滚和 MVCC
  • redo log(重做日志):是 Innodb 存储引擎层生成的日志,实现了事务中的持久性,主要用于掉电等故障恢复
  • bin log (归档日志):是 Server 层生成的日志,主要用于数据备份和主从复制

redo log 和 undo log 区别在哪?

这两种日志是属于 InnoDB 存储引擎的日志,它们的区别在于:

  • redo log 记录了此次事务「完成后」的数据状态,记录的是更新之后的值;
  • undo log 记录了此次事务「开始前」的数据状态,记录的是更新之前的值;

undo log

是一种用于撤销回退的日志。在事务没提交之前,MySQL 会先记录更新前的数据到 undo log 日志文件里面,当事务回滚时,可以利用 undo log 来进行回滚。 undo log 两大作用:

  • 实现事务回滚,保障事务的原子性。事务处理过程中,如果出现了错误或者用户执 行了 ROLLBACK 语句,MySQL 可以利用 undo log 中的历史数据将数据恢复到事务开始之前的状态。
  • 实现 MVCC(多版本并发控制)关键因素之一。MVCC 是通过 ReadView + undo log 实现的。undo log 为每条记录保存多份历史数据,MySQL 在执行快照读(普通 select 语句)的时候,会根据事务的 Read View 里的信息,顺着 undo log 的版本链找到满足其可见性的记录。

Redo log

Buffer Pool 提高了读写效率,但 Buffer Pool 是基于内存的,而内存总是不可靠,万一断电重启,还没来得及落盘的脏页数据就会丢失。 为了防止断电导致数据丢失的问题,当有一条记录需要更新的时候,InnoDB 引擎就会先更新内存(同时标记为脏页),然后将本次对这个页的修改以 redo log 的形式记录下来,这个时候更新就算完成了。 后续,InnoDB 引擎会在适当的时候,由后台线程将缓存在 Buffer Pool 的脏页刷新到磁盘里,这就是 WAL (Write-Ahead Logging)技术

redo log 要写到磁盘,数据也要写磁盘,为什么要多此一举?

写入 redo log 的方式使用了追加操作, 所以磁盘操作是顺序写,而写入数据需要先找到写入位置,然后才写到磁盘,所以磁盘操作是随机写。 磁盘的「顺序写 」比「随机写」 高效的多,因此 redo log 写入磁盘的开销更小。 为什么需要 redo log 这个问题我们有两个答案:

  • 实现事务的持久性,让 MySQL 有 crash-safe 的能力,能够保证 MySQL 在任何时间段突然崩溃,重启后之前已提交的记录都不会丢失;
  • 将写操作从「随机写」变成了「顺序写」,提升 MySQL 写入磁盘的性能。

bin log

前面介绍的 undo log 和 redo log 这两个日志都是 Innodb 存储引擎生成的。 MySQL 在完成一条更新操作后,Server 层还会生成一条 binlog,等之后事务提交的时候,会将该事物执行过程中产生的所有 binlog 统一写 入 binlog 文件。 binlog 文件是记录了所有数据库表结构变更和表数据修改的日志,不会记录查询类的操作,比如 SELECT 和 SHOW 操作。

redo log 和 binlog 有什么区别?

1、适用对象不同:

  • binlog 是 MySQL 的 Server 层实现的日志,所有存储引擎都可以使用;
  • redo log 是 Innodb 存储引擎实现的日志;

2、文件格式不同:

3、写入方式不同:

  • binlog 是追加写,写满一个文件,就创建一个新的文件继续写,不会覆盖以前的日志,保存的是全量的日志。
  • redo log 是循环写,日志空间大小是固定,全部写满就从头开始,保存未被刷入磁盘的脏页日志。

4、用途不同:

  • binlog 用于备份恢复、主从复制;
  • redo log 用于掉电等故障恢复。

如果不小心整个数据库的数据被删除了,不可以使用 redo log 文件恢复,只能使用 binlog 文件恢复。 因为 redo log 文件是循环写,是会边写边擦除日志的,只记录未被刷入磁盘的数据的物理日志,已经刷入磁盘的数据都会从 redo log 文件里擦除binlog 文件保存的是全量的日志,也就是保存了所有数据变更的情况,理论上只要记录在 binlog 上的数据,都可以恢复,所以如果不小心整个数据库的数据被删除了,得用 binlog 文件恢复数据。

两阶段提交

事务提交后,redo log 和 binlog 都要持久化到磁盘,但是这两个是独立的逻辑,可能出现半成功的状态,这样就造成两份日志之间的逻辑不一致。 MySQL 为了避免出现两份日志之间的逻辑不一致的问题,使用了「两阶段提交」来解决,两阶段提交其实是分布式事务一致性协议,它可以保证多个逻辑操作要不全部成功,要不全部失败,不会出现半成功的状态。 两阶段提交把单个事务的提交拆分成了 2 个阶段,分别是「准备(Prepare)阶段」和「提交(Commit)阶段」,每个阶段都由协调者(Coordinator)和参与者(Participant)共同完成。

从图中可看出,事务的提交过程有两个阶段,就是将 redo log 的写入拆成了两个步骤:prepare 和 commit,中间再穿插写入 binlog,具体如下:

  • prepare 阶段:将 XID(内部 XA 事务的 ID) 写入到 redo log,同时将 redo log 对应的事务状态设置为 prepare,然后将 redo log 持久化到磁盘(innodb_flush_log_at_trx_commit = 1 的作用);
  • commit 阶段:把 XID 写入到 binlog,然后将 binlog 持久化到磁盘(sync_binlog = 1 的作用),接着调用引擎的提交事务接口,将 redo log 状态设置为 commit,此时该状态并不需要持久化到磁盘,只需要 write 到文件系统的 page cache 中就够了,因为只要 binlog 写磁盘成功,就算 redo log 的状态还是 prepare 也没有关系,一样会被认为事务已经执行成功;

讲讲覆盖索引

覆盖索引是指 SQL 中 query 的所有字段,在索引 B+Tree 的叶子节点上都能找得到的那些索引,从二级索引中查询得到记录,而不需要通过聚簇索引查询获得,可以避免回表的操作。 如果某个查询语句使用了二级索引,且查询的数据是主键值时,因为只在二级索引就能查询到,不用再去聚簇索引查,也就是只需要查一个 B+ 树就能找到数据。 也可以使用联合索引覆盖多个查询字段,同样可以避免回表

介绍一下分库分表,分表有哪些方式

水平分表:根据某些字段进行划分,比如日期 垂直分表:根据业务拆分表格,减少单表的字段

hash 索引是什么,优缺点

幻读和不可重复读的区别

幻读怎么解决

MySQL InnoDB 引擎的默认隔离级别虽然是「可重复读」,但是它很大程度上避免幻读现象(并不是完全解决了),解决的方案有两种:

  • 针对快照读(普通 select 语句),是通过 MVCC 方式解决了幻读,因为可重复读隔离级别下,事务执行过程中看到的数据,一直跟这个事务启动时看到的数据是一致的,即使中途有其他事务插入了一条数据,是查询不出来这条数据的,所以就很好了避免幻读问题。
  • 针对当前读(select … for update 等语句),是通过 next-key lock(记录锁+间隙锁)方式解决了幻读,因为当执行 select … for update 语句的时候,会加上 next-key lock,如果有其他事务在 next-key lock 锁范围内插入了一条记录,那么这个插入语句就会被阻塞,无法成功插入,所以就很好了避免幻读问题。

mysql 如何保证 ACID 这四个特性

InnoDB 引擎通过什么技术来保证事务的这四个特性的呢?

  • 持久性是通过 redo log (重做日志)来保证的;
  • 原子性是通过 undo log(回滚日志) 来保证的;
  • 隔离性是通过 MVCC(多版本并发控制) 或锁机制来保证的;
  • 一致性则是通过持久性+原子性+隔离性来保证;

深分页问题

我们日常做分页需求时,一般会用 limit 实现,但是当偏移量特别大的时候,查询效率就变得低下。