Source:
class Solution {
public String longestPalindrome(String s) {
String res = "";
for (int i = 0; i < s.length(); i++) {
// 以 s[i] 为中心的最长回文子串
String s1 = palindrome(s, i, i);
// 以 s[i] 和 s[i+1] 为中心的最长回文子串
String s2 = palindrome(s, i, i + 1);
// res = longest(res, s1, s2)
res = res.length() > s1.length() ? res : s1;
res = res.length() > s2.length() ? res : s2;
}
return res;
}
// 以 l, r 为中心向两边寻找最长回文字符串
String palindrome(String s, int l, int r) {
// 防止索引越界
while (l >= 0 && r < s.length()
&& s.charAt(l) == s.charAt(r)) {
// 向两边展开
l--;
r++;
}
// 返回以 s[l] 和 s[r] 为中心的最长回文串
return s.substring(l + 1, r);
}
}
寻找回文串的问题核心思想是:从中间开始向两边扩散来判断回文串,对于最长回文子串,就是这个意思:
for 0 <= i < len(s):
找到以 s[i] 为中心的回文串
更新答案
找回文串的关键技巧是传入两个指针 l 和 r 向两边扩散,因为这样实现可以同时处理回文串长度为奇数和偶数的情况。
for 0 <= i < len(s):
# 找到以 s[i] 为中心的回文串
palindrome(s, i, i)
# 找到以 s[i] 和 s[i+1] 为中心的回文串
palindrome(s, i, i + 1)
更新答案